SPC BENCHMARK 1™

FULL DISCLOSURE REPORT

HUAWEI TECHNOLOGIES Co., Ltd
HUAWEI OCEANSTOR 5600 V5

SPC-1 V3.8

SUBMISSION IDENTIFIER: A31020

SUBMITTED FOR REVIEW: DECEMBER 27, 2018
First Edition – December 2018

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS WITHOUT ANY WARRANTY EITHER EXPRESS OR IMPLIED. The use of this information or the implementation of any of these techniques is the customer’s responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While each item has been reviewed by Huawei, for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

This publication was produced in the United States. Huawei may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change with notice. Consult your local Huawei representative for information on products and services available in your area.

© Copyright Huawei 2018. All rights reserved.

Permission is hereby granted to publicly disclose and reproduce this document, in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

Trademarks

SPC Benchmark 1, SPC-1, SPC-1 IOPS, SPC-1 LRT and SPC-1 Price-Performance are trademarks of the Storage Performance Council.

Huawei, the Huawei logo, FusionServer™ and OceanStor are trademarks or registered trademarks of Huawei in the United States and other countries. All other brands, trademarks, and product names are the property of their respective owners.

Benchmark Specification and Glossary

The official SPC Benchmark 1™ (SPC-1™) specification is available on the website of the Storage Performance Council (SPC) at spcresults.org.

The SPC-1™ specification contains a glossary of the SPC-1™ terms used in this publication.
Table of Contents

Audit Certification .. 4
Letter Of Good Faith .. 6
Executive Summary .. 7
Configuration Information .. 13
 Benchmark Configuration and Tested Storage Configuration ... 13
 Benchmark Configuration Creation Process ... 15
Benchmark Execution Results .. 16
 Benchmark Execution Overview .. 16
 SUSTAIN Test Phase .. 17
 RAMPD_100 Test Phase .. 20
 Response Time Ramp Test ... 23
 Repeatability Test .. 25
 Space Optimization Reporting .. 28
 Data Persistence Test .. 29
Appendix A: Supporting Files .. 30
Appendix B: Third Party Quotation .. 31
Appendix C: Tuning Parameters and Options .. 33
Appendix D: Storage Configuration Creation .. 35
Appendix E: Configuration Inventory .. 40
Appendix F: Workload Generator .. 41
AUDIT CERTIFICATION

Zhong Xu
Huawei Technologies Co., Ltd.
Huawei Industrial Base, Bantian,
Longgang, Shenzhen city,
Guangdong province, China

December 26, 2018

I verified the SPC Benchmark 1™ (SPC-1™ Revision 3.8) test execution and performance results of the following Tested Storage Product:

HUAWEI OCEANSTOR 5600 V5

The results were:

<table>
<thead>
<tr>
<th>SPC-1 IOPS™</th>
<th>1,100,252</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC-1 Price-Performance™</td>
<td>$405.39/SPC-1 KIOPS™</td>
</tr>
<tr>
<td>SPC-1 IOPS™ Response Time</td>
<td>0.710 ms</td>
</tr>
<tr>
<td>SPC-1 Overall Response Time</td>
<td>0.445 ms</td>
</tr>
<tr>
<td>SPC-1 ASU Capacity</td>
<td>26,124 GB</td>
</tr>
<tr>
<td>SPC-1 ASU Price</td>
<td>$17.08/GB</td>
</tr>
<tr>
<td>SPC-1 Total System Price</td>
<td>$446,024.48</td>
</tr>
</tbody>
</table>

In my opinion, these performance results were produced in compliance with the SPC requirements for the benchmark.

The testing was executed using the SPC-1 Toolkit Version 3.0.2-1 build g823a. The audit process was conducted in accordance with the SPC Policies and met the requirements for the benchmark.

A Letter of Good Faith was issued by the Test Sponsor, stating the accuracy and completeness of the documentation and testing data provided in support of the audit of this result.

A Full Disclosure Report for this result was prepared by InfoSizing, reviewed and approved by the Test Sponsor, and can be found at www.spcresults.org under the Submission Identifier A31020.
The independent audit process conducted by InfoSizing included the verifications of the following items:

- The physical capacity of the data repository;
- The total capacity of the Application Storage Unit (ASU);
- The accuracy of the Benchmark Configuration diagram;
- The tuning parameters used to configure the Benchmark Configuration;
- The Workload Generator commands used to execute the testing;
- The validity and integrity of the test result files;
- The compliance of the results from each performance test;
- The compliance of the results from the persistence test;
- The compliance of the submitted pricing model; and
- The differences between the tested and the priced configuration, if any.

The Full Disclosure Report for this result was prepared in accordance with the disclosure requirements set forth in the specification for the benchmark.

The following benchmark requirements, if any, were waived according to the SPC Policies:

- None.

Respectfully Yours,

François Raab, Certified SPC Auditor
LETTER OF GOOD FAITH

Date: December 19, 2018

From: Huawei Technologies Co., Ltd.

To: Mr. Francois Raab, Certified SPC Auditor
InfoSizing
20 Kreg Lane
Manitou Springs, CO 80829

Subject: SPC-1 Letter of Good Faith for the Huawei OceanStor 5600V5

Huawei Technologies Co., Ltd. is the SPC-1 Test Sponsor for the above listed product. To the best of our knowledge and belief, the required SPC-1 benchmark results and materials we have submitted for that product are complete, accurate, and in full compliance with V3.8 of the SPC-1 benchmark specification.

In addition, we have reported any items in the Benchmark Configuration and execution of the benchmark that affected the reported results even if the items are not explicitly required to be disclosed by the SPC-1 benchmark specification.

Signed:

Meng Guangbin
President of Storage Product Line

Date:
2018.12.19
SPC BENCHMARK 1™

EXECUTIVE SUMMARY

HUAWEI TECHNOLOGIES CO., LTD
HUAWEI OCEANSTOR 5600 V5

<table>
<thead>
<tr>
<th>SPC-1 IOPS™</th>
<th>1,100,252</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC-1 Price-Performance™</td>
<td>$405.39/SPC-1 KIOPS™</td>
</tr>
<tr>
<td>SPC-1 IOPS™ Response Time</td>
<td>0.710 ms</td>
</tr>
<tr>
<td>SPC-1 Overall Response Time</td>
<td>0.445 ms</td>
</tr>
<tr>
<td>SPC-1 ASU Capacity</td>
<td>26,124 GB</td>
</tr>
<tr>
<td>SPC-1 ASU Price</td>
<td>$17.08/GB</td>
</tr>
<tr>
<td>SPC-1 Total System Price</td>
<td>$446,024.48</td>
</tr>
</tbody>
</table>

Data Protection Level: Protected 2 (RAID-10 and full redundancy)
Physical Storage Capacity: 69,120 GB
Pricing Currency / Target Country: U.S. Dollars / USA

SPC-1 V3.8

SUBMISSION IDENTIFIER: A31020
SUBMITTED FOR REVIEW: DECEMBER 27, 2018
Benchmark Configuration Diagram

Host Systems

6 x Huawei FusionServer™ RH2288H V3

2 x QLogic dual-ported QLE2562 FC HBA per FusionServer™

24 x FC connections (4 connections per server)

Huawei OceanStor 5600 V5

2 x System Enclosures

4 x OceanStor 5600 V5 Active-Active Controllers

128 GB cache per controller (512 GB total)

8 x 4-port 8Gbps Smart I/O Modules (2 per Controller)

4 x 4-port 10Gbps Smart I/O Modules (1 per Controller)

8 x 4-port 12Gbps SAS I/O Modules (2 per Controller)

8 x 2U Disk Enclosures

72 x 960 GB SSDs (9 per Enclosure)

Tested Storage Configuration (TSC)
Tested Storage Product Description

The new generation of mid-range hybrid flash storage, dedicated to providing the reliable and efficient data services for enterprises.

Cloud-ready operating system, flash-enabled performance, and intelligent management software, delivering top-of-the-line functionality, performance, efficiency, reliability, and ease of use.

Satisfies the data storage requirements of large-database OLTP/OLAP, cloud computing, and many other applications, making it a perfect choice for sectors such as government, finance, telecommunications, and manufacturing.

For more details, visit:

Priced Storage Configuration Components

<table>
<thead>
<tr>
<th>12 x QLogic dual-ported QLE2562 FC HBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x System enclosures, each with:</td>
</tr>
<tr>
<td>2 x OceanStor 5600 V5 Active-Active Controllers (4 total), each with:</td>
</tr>
<tr>
<td>128 GB cache (512 GB total)</td>
</tr>
<tr>
<td>2 x 4-port 8Gbps Smart I/O Modules (8 total)</td>
</tr>
<tr>
<td>1 x 4-port 10Gbps Smart I/O Modules (4 total)</td>
</tr>
<tr>
<td>2 x 4-port 12Gbps SAS I/O Modules (8 total)</td>
</tr>
<tr>
<td>8 x 2U Disk enclosures, each with:</td>
</tr>
<tr>
<td>9 x 960 GB SSDs (72 total)</td>
</tr>
</tbody>
</table>
Storage Configuration Pricing

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
<th>Unit Price</th>
<th>Ext. Price</th>
<th>Disc.</th>
<th>Disc. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware & Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02351LWK 56V5-256G-AC2</td>
<td>OceanStor 5600 V5 Engine(3U,Dual Controller,AC240HVDC,256GB Cache,SP663C03000)</td>
<td>2</td>
<td>116,820.00</td>
<td>233,640.00</td>
<td>68%</td>
</tr>
<tr>
<td>SMARTIQ010ETH</td>
<td>4 port SmartIQ I/O module(SFP+,10Gb Eth/FCoE/VN2/VF)/Scale-out</td>
<td>4</td>
<td>6,288.00</td>
<td>25,152.00</td>
<td>68%</td>
</tr>
<tr>
<td>SMARTIQ08FC</td>
<td>4 port SmartIQ I/O module(SFP+,8Gb FC)</td>
<td>8</td>
<td>3,192.00</td>
<td>25,536.00</td>
<td>68%</td>
</tr>
<tr>
<td>LPU4S12V3</td>
<td>4 port 4*12Gb SAS I/O module(MiniSAS HD)</td>
<td>8</td>
<td>4,963.00</td>
<td>39,704.00</td>
<td>68%</td>
</tr>
<tr>
<td>HSSD-960G25-A9</td>
<td>960GB SSD SAS Disk Unit(2.5")</td>
<td>72</td>
<td>10,176.00</td>
<td>732,672.00</td>
<td>70%</td>
</tr>
<tr>
<td>DAES2525U2-AC2</td>
<td>Disk Enclosure(2U,AC240HVDC,2.5",Expanding Module,25 Disk Slots,without Disk Unit,DAE52525U2)</td>
<td>8</td>
<td>10,584.00</td>
<td>84,672.00</td>
<td>68%</td>
</tr>
<tr>
<td>N8GHBA000</td>
<td>QLOGIC QLE2562 HBA Card,PCIE,8Gbps DualPort,Fiber Channel Multimode LC Optic Interface,English Manual, No Drive CD</td>
<td>12</td>
<td>1,698.00</td>
<td>20,376.00</td>
<td>0%</td>
</tr>
<tr>
<td>SN2F01FCPC</td>
<td>Patch Cord,DLC/PC,DLC/PC,Multimode,3m,A1a,2,2mm,42mm DLC,OM3 bending insensitive</td>
<td>24</td>
<td>14.00</td>
<td>336.00</td>
<td>0%</td>
</tr>
<tr>
<td>LIC-6SV5-BS</td>
<td>Basic Software License(Including DeviceManager,SmartThin,SmartMulti-tenant,SmartMigration,SmartErase,SmartMotion, SystemReporter,eService,SmartQuota,NFS,CIFS,NDMP)</td>
<td>1</td>
<td>9,852.00</td>
<td>9,852.00</td>
<td>70%</td>
</tr>
<tr>
<td>Support & Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02351LWK-88134UFL-36</td>
<td>OceanStor 5600 V5 Engine(3U,Dual Controller,AC240HVDC,256GB Cache,SP663C03000&4"Disk Enclosure-2U,AC240HVDC,2.5",DAE52525U2&36960GB SSD SAS Disk Unit(2.5")&4Disk Enclosure Premier 24x7x4H Engineer Onsite Service-36Month(s)</td>
<td>2</td>
<td>29,292.00</td>
<td>58,584.00</td>
<td>0%</td>
</tr>
<tr>
<td>88034JNY-88134UHK-36</td>
<td>Basic Software License(Including DeviceManager,SmartThin,SmartMulti-tenant,SmartMigration,SmartErase,SmartMotion, SystemReporter,eService,SmartQuota,NFS,CIFS,NDMP)-Hi-Care Application Software Upgrade Support Service-36Month(s)</td>
<td>1</td>
<td>2,919.00</td>
<td>2,919.00</td>
<td>0%</td>
</tr>
<tr>
<td>8812153244</td>
<td>OceanStor 5600 V5 Installation Service - Engineering</td>
<td>1</td>
<td>10,267.00</td>
<td>10,267.00</td>
<td>0%</td>
</tr>
</tbody>
</table>

SPC-1 Total System Price | 446,024.48 |

SPC-1 Price-Performance™ ($/SPC-1 KIOPS™) | 405.39 |

SPC-1 ASU Capacity (GB) | 26,124 |

SPC-1 ASU Price ($/GB) | 17.08 |

Third-Party Reseller: Huawei Technologies Co., Ltd. only sells its products to third-party resellers who, in turn, sell those products to U.S. customers. The above reflects the pricing quoted by one of those third-party resellers. See Appendix B of the Full Disclosure Report for a copy of the third-party reseller’s quotation.
Discount Details: The discounts shown are based on the storage capacity purchased and are generally available.

Warranty: Hi-Care Premier On-Site Service include: 7x24 Technical Assistance Center Access. Access to all new software updates and Online Support. 24x7 with 4-hour On-site Hardware Replacement.

Availability Date: Currently available.
Response Time and Throughput Graph

Contact Information

| Test Sponsor Primary Contact | Huawei Technologies Co., Ltd. – www.huawei.com
| | Zhong Xu – xuzhong@huawei.com

| SPC Auditor | InfoSizing – www.sizing.com
| | Francois Raab – francois@sizing.com

Revision Information

| SPC Benchmark 1™ Revision | V3.8.0
| SPC-1 Workload Generator Revision | V3.0.2-1 build g823a
| Publication Revision History | First Edition
CONFIGURATION INFORMATION

Benchmark Configuration and Tested Storage Configuration

The following diagram illustrates the Benchmark Configuration (BC), including the Tested Storage Configuration (TSC) and the Host System(s).

Storage Network Configuration

The Tested Storage Configuration (TSC) involved an external storage subsystem made of 4 Huawei OCEANSTOR 5600 V5, driven by 6 host systems (Huawei
FusionServer RH2288H V3). The OceanStor controllers were grouped in sets of 2 in 2 system enclosures, forming 2 OceanStor Engines. Each FusionServer host system connected one-to-one to each OceanStor Engine. That connection was established via a port from 1 of the 2 dual-port Fibre Channel HBAs on the FusionServer; and a port from 1 of the 4 4-port Smart I/O Modules on the OceanStor Engine, leaving 4 of these ports inactive in each Engine. These Fibre Channel paths operated at 8Gbps.

Host System and Tested Storage Configuration Components

The following table lists the components of the Host System(s) and the Tested Storage Configuration (TSC).

<table>
<thead>
<tr>
<th>Host Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x Huawei FusionServer™ RH2288H V3</td>
</tr>
<tr>
<td>2 x Intel® Xeon® E5-2680 v3 (2.7 GHz, 8 Cores, 20 MB L3)</td>
</tr>
<tr>
<td>128 GB Main Memory</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priced Storage Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x QLogic dual-ported QLE2562 FC HBA</td>
</tr>
<tr>
<td>2 x System enclosures, each with:</td>
</tr>
<tr>
<td>2 x OceanStor 5600 V5 Active-Active Controllers (4 total), each with:</td>
</tr>
<tr>
<td>128 GB cache (512 GB total)</td>
</tr>
<tr>
<td>2 x 4-port 8Gbps Smart I/O Modules (8 total)</td>
</tr>
<tr>
<td>1 x 4-port 10Gbps Smart I/O Modules (4 total)</td>
</tr>
<tr>
<td>2 x 4-port 12Gbps SAS I/O Modules (8 total)</td>
</tr>
<tr>
<td>8 x 2U Disk enclosures, each with:</td>
</tr>
<tr>
<td>9 x 960 GB SSDs (72 total)</td>
</tr>
</tbody>
</table>

Differences Between Tested and Priced Storage Configurations

There were no differences between the Tested Storage Configuration and the Priced Storage Configuration.

Component Changes in Revised Full Disclosure Report

The following table outlines component changes that were made in revisions to this Full Disclosure Report.

<table>
<thead>
<tr>
<th>Original Component</th>
<th>Revised Component</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>n/a</td>
<td>Initial submission</td>
</tr>
</tbody>
</table>
Benchmark Configuration Creation Process

Customer Tuning Parameters and Options

All the customer tuning parameters and options that have been altered from their default values for this benchmark are included in Appendix C and in the Supporting Files (see Appendix A).

Tested Storage Configuration Creation

A detailed description of how the logical representation of the TSC was created is included in Appendix D and in the Supporting Files (see Appendix A).

Tested Storage Configuration Inventory

An inventory of the components in the TSC, as seen by the Benchmark Configuration, is included in Appendix E and in the Supporting Files (see Appendix A).

Workload Generator Storage Configuration

The SPC-1 Workload Generator storage configuration commands and parameters used to invoke the execution of the tests are included in Appendix F and in the Supporting Files (see Appendix A).

Logical Volume Capacity and ASU Mapping

The following table details the capacity of each ASU and how they are mapped to logical volumes (LV).

<table>
<thead>
<tr>
<th>LV per ASU</th>
<th>LV Capacity</th>
<th>Used per LV</th>
<th>Total per ASU</th>
<th>% ASU Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASU-1</td>
<td>18</td>
<td>653.2</td>
<td>653.1</td>
<td>11,755.9</td>
</tr>
<tr>
<td>ASU-2</td>
<td>18</td>
<td>653.2</td>
<td>653.1</td>
<td>11,755.9</td>
</tr>
<tr>
<td>ASU-3</td>
<td>2</td>
<td>1,306.3</td>
<td>1,306.2</td>
<td>2,612.4</td>
</tr>
</tbody>
</table>

SPC-1 ASU Capacity 26,124

Physical Storage Capacity and Utilization

The following table details the Physical Capacity of the storage devices and the Physical Capacity Utilization (percentage of Total Physical Capacity used) in support of hosting the ASUs.

<table>
<thead>
<tr>
<th>Devices</th>
<th>Count</th>
<th>Physical Capacity</th>
<th>Total Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>960GB SSD</td>
<td>72</td>
<td>960.0</td>
<td>69,120.0</td>
</tr>
<tr>
<td>Total Physical Capacity</td>
<td></td>
<td>69,120.0</td>
<td></td>
</tr>
<tr>
<td>Physical Capacity Utilization</td>
<td></td>
<td>37.79%</td>
<td></td>
</tr>
</tbody>
</table>

Data Protection

The data protection level used for all logical volumes was Protected 2, which was accomplished by configuring 8 pools of 9 drives into 8 RAID-10 arrays and providing redundancy for all TSC components.
BENCHMARK EXECUTION RESULTS
This portion of the Full Disclosure Report documents the results of the various SPC-1 Tests, Test Phases, and Test Runs.

Benchmark Execution Overview

Workload Generator Input Parameters
The SPC-1 Workload Generator commands and input parameters for the Test Phases are presented in the Supporting Files (see Appendix A).

Primary Metrics Test Phases
The benchmark execution consists of the Primary Metrics Test Phases, including the Test Phases SUSTAIN, RAMPD_100 to RAMPD_10, RAMPU_50 to RAMPU_100, RAMP_0, REPEAT_1 and REPEAT_2.

Each Test Phase starts with a transition period followed by a Measurement Interval.

Measurement Intervals by Test Phase Graph
The following graph presents the average IOPS and the average Response Times measured over the Measurement Interval (MI) of each Test Phase.

![Measurement Intervals by Test Phase Graph](image)

Exception and Waiver
None.
SUSTAIN Test Phase

SUSTAIN – Results File

The results file generated during the execution of the SUSTAIN Test Phase is included in the Supporting Files (see Appendix A) as follows:

- SPC1_METRICS_0_Raw_Results.xlsx

SUSTAIN – Execution Times

<table>
<thead>
<tr>
<th>Interval</th>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Period</td>
<td>12-Dec-18 11:40:22</td>
<td>12-Dec-18 22:40:22</td>
<td>11:00:00</td>
</tr>
<tr>
<td>Measurement Interval</td>
<td>12-Dec-18 22:40:22</td>
<td>13-Dec-18 06:40:22</td>
<td>8:00:00</td>
</tr>
</tbody>
</table>

SUSTAIN – Throughput Graph

Throughput Graph (SUSTAIN @ 1,100,200 IOPS)

- ASU1
- ASU2
- ASU3
- All ASUs

MI

Request Throughput (IOPS)

Relative Run Time (minutes)
SUSTAIN – Response Time Graph

![Response Time Graph (SUSTAIN @ 1,100,200 IOPS)](image)

SUSTAIN – Data Rate Graph

![Data Rate Graph (SUSTAIN @ 1,100,200 IOPS)](image)
SUSTAIN – Response Time Frequency Graph

SUSTAIN – Intensity Multiplier

The following table lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O STREAM, its coefficient of variation (Variation) and the percentage of difference (Difference) between Target and Measured.

<table>
<thead>
<tr>
<th></th>
<th>ASU1-1</th>
<th>ASU1-2</th>
<th>ASU1-3</th>
<th>ASU1-4</th>
<th>ASU2-1</th>
<th>ASU2-2</th>
<th>ASU2-3</th>
<th>ASU3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Measured</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Variation</td>
<td>0.0006</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0010</td>
<td>0.0004</td>
<td>0.0006</td>
<td>0.0002</td>
</tr>
<tr>
<td>Difference</td>
<td>0.004%</td>
<td>0.000%</td>
<td>0.003%</td>
<td>0.000%</td>
<td>0.012%</td>
<td>0.003%</td>
<td>0.003%</td>
<td>0.003%</td>
</tr>
</tbody>
</table>
RAMPD_100 Test Phase

RAMPD_100 – Results File

The results file generated during the execution of the RAMPD_100 Test Phase is included in the Supporting Files (see Appendix A) as follows:

- SPC1_METRICS_0_Raw_Results.xlsx

RAMPD_100 – Execution Times

<table>
<thead>
<tr>
<th>Interval</th>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Period</td>
<td>13-Dec-18 06:41:22</td>
<td>13-Dec-18 06:44:22</td>
<td>0:03:00</td>
</tr>
<tr>
<td>Measurement Interval</td>
<td>13-Dec-18 06:44:22</td>
<td>13-Dec-18 06:54:22</td>
<td>0:10:00</td>
</tr>
</tbody>
</table>

RAMPD_100 – Throughput Graph

![Throughput Graph (RAMPD_100 @ 1,100,200 IOPS)](image-url)
RAMPD_100 – Response Time Graph

![Response Time Graph (RAMPD_100 @ 1,100,200 IOPS)](image)

RAMPD_100 – Data Rate Graph

![Data Rate Graph (RAMPD_100 @ 1,100,200 IOPS)](image)
RAMPD_100 – Response Time Frequency Graph

![Response Time Frequency Graph (RAMPD_100 @ 1,100,200 IOPS)](image)

RAMPD_100 – Intensity Multiplier

The following table lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O STREAM, its coefficient of variation (Variation) and the percentage of difference (Difference) between Target and Measured.

<table>
<thead>
<tr>
<th></th>
<th>ASU1-1</th>
<th>ASU1-2</th>
<th>ASU1-3</th>
<th>ASU1-4</th>
<th>ASU2-1</th>
<th>ASU2-2</th>
<th>ASU2-3</th>
<th>ASU3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Measured</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Variation</td>
<td>0.0007</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0009</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0002</td>
</tr>
<tr>
<td>Difference</td>
<td>0.010%</td>
<td>0.006%</td>
<td>0.016%</td>
<td>0.010%</td>
<td>0.023%</td>
<td>0.003%</td>
<td>0.015%</td>
<td>0.004%</td>
</tr>
</tbody>
</table>

RAMPD_100 – I/O Request Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Requests Completed in the Measurement Interval</td>
<td>660,157,416</td>
</tr>
<tr>
<td>I/O Requests Completed with Response Time <= 30 ms</td>
<td>660,157,372</td>
</tr>
<tr>
<td>I/O Requests Completed with Response Time > 30 ms</td>
<td>44</td>
</tr>
</tbody>
</table>
Response Time Ramp Test

Response Time Ramp Test – Results File

The results file generated during the execution of the Response Time Ramp Test is included in the Supporting Files (see Appendix A) as follows:

- **SPC1_METRICS_0_Raw_Results.xlsx**

Response Time Ramp Test – Phases

The Response Time Ramp Test is comprised of 11 Test Phases, including six Ramp-Down Phases (executed at 100%, 95%, 90%, 80%, 50%, and 10% of the Business Scaling Unit) and five Ramp-Up Phases (executed at 50%, 80%, 90%, 95%, and 100% of the Business Scaling Unit).

Response Time Ramp Test – Average Throughput Graph

![Average Throughput Graph (Response Time Ramp Test)](image)
Response Time Ramp Test – Average Response Time Graph

![Average Response Time Graph (Response Time Ramp Test)](image1)

Response Time Ramp Test – RAMPD_10 Response Time Graph

![Response Time Graph (RAMPD_10 @ 110,020 IOPS)](image2)
Repeatability Test

Repeatability Test Results File

The results file generated during the execution of the Repeatability Test is included in the Supporting Files (see Appendix A) as follows:

- SPC1_METRICS_0_Raw_Results.xlsx

Repeatability Test Results

The throughput measurements for the Response Time Ramp Test (RAMPD) and the Repeatability Test Phases (REPEAT_1 and REPEAT_2) are listed in the tables below.

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>100% IOPS</th>
<th>10% IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMPD</td>
<td>1,100,252.6</td>
<td>110,018.9</td>
</tr>
<tr>
<td>REPEAT_1</td>
<td>1,100,239.5</td>
<td>110,036.6</td>
</tr>
<tr>
<td>REPEAT_2</td>
<td>1,100,317.5</td>
<td>110,044.1</td>
</tr>
</tbody>
</table>

REPEAT_1_100 – Throughput Graph
REPEAT_1_100 – Response Time Graph

Response Time Graph (REPEAT_1_100 @ 1,100,200 IOPS)

- ASU1
- ASU2
- ASU3
- All ASUs

REPEAT_2_100 – Throughput Graph

Throughput Graph (REPEAT_2_100 @ 1,100,200 IOPS)

- ASU1
- ASU2
- ASU3
- All ASUs
Repeatability Test – Intensity Multiplier

The following tables list the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O STREAM, its coefficient of variation (Variation) and the percent of difference (Difference) between Target and Measured.

REPEAT_1_100 Test Phase

<table>
<thead>
<tr>
<th></th>
<th>ASU1-1</th>
<th>ASU1-2</th>
<th>ASU1-3</th>
<th>ASU1-4</th>
<th>ASU2-1</th>
<th>ASU2-2</th>
<th>ASU2-3</th>
<th>ASU3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Measured</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Variation</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0007</td>
<td>0.0003</td>
<td>0.0008</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>Difference</td>
<td>0.002%</td>
<td>0.005%</td>
<td>0.010%</td>
<td>0.005%</td>
<td>0.025%</td>
<td>0.005%</td>
<td>0.015%</td>
<td>0.003%</td>
</tr>
</tbody>
</table>

REPEAT_2_100 Test Phase

<table>
<thead>
<tr>
<th></th>
<th>ASU1-1</th>
<th>ASU1-2</th>
<th>ASU1-3</th>
<th>ASU1-4</th>
<th>ASU2-1</th>
<th>ASU2-2</th>
<th>ASU2-3</th>
<th>ASU3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Measured</td>
<td>0.0350</td>
<td>0.2810</td>
<td>0.0700</td>
<td>0.2100</td>
<td>0.0180</td>
<td>0.0700</td>
<td>0.0350</td>
<td>0.2810</td>
</tr>
<tr>
<td>Variation</td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0011</td>
<td>0.0003</td>
<td>0.0008</td>
<td>0.0002</td>
</tr>
<tr>
<td>Difference</td>
<td>0.043%</td>
<td>0.010%</td>
<td>0.016%</td>
<td>0.003%</td>
<td>0.045%</td>
<td>0.006%</td>
<td>0.011%</td>
<td>0.005%</td>
</tr>
</tbody>
</table>
Space Optimization Reporting

Description of Utilized Techniques

No space optimization was used for this SPC-1 result.

Physical Free Space Measurements

The following table lists the Physical Free Space as measured at each of the required points during test execution. If space optimization techniques were not used, “NA” is reported.

<table>
<thead>
<tr>
<th>Physical Free Space Measurement</th>
<th>Free Space (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Logical Volume Creation</td>
<td>NA</td>
</tr>
<tr>
<td>After ASU Pre-Fill</td>
<td>NA</td>
</tr>
<tr>
<td>After Repeatability Test Phase</td>
<td>NA</td>
</tr>
</tbody>
</table>

Space Optimization Metrics

The following table lists the required space optimization metrics. If space optimization techniques were not used, “NA” is reported.

<table>
<thead>
<tr>
<th>Space Optimization Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC-1 Space Optimization Ratio</td>
<td>NA</td>
</tr>
<tr>
<td>SPC-1 Space Effectiveness Ratio</td>
<td>NA</td>
</tr>
</tbody>
</table>
Data Persistence Test

Data Persistence Test Results file

The results files generated during the execution of the Data Persistence Test is included in the Supporting Files (see Appendix A) as follows:

- SPC1_PERSIST_1_0_Raw_Results.xlsx
- SPC1_PERSIST_2_0_Raw_Results.xlsx

Data Persistence Test Execution

The Data Persistence Test was executed using the following sequence of steps:

- The PERSIST_1_0 Test Phase was executed to completion.
- The Benchmark Configuration was taken through an orderly shutdown process and powered off.
- The Benchmark Configuration was powered on and taken through an orderly startup process.
- The PERSIST_2_0 Test Phase was executed to completion.

Data Persistence Test Results

<table>
<thead>
<tr>
<th>Data Persistence Test Phase: Persist1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Logical Blocks Written</td>
<td>164,386,986</td>
</tr>
<tr>
<td>Total Number of Logical Blocks Verified</td>
<td>85,405,104</td>
</tr>
<tr>
<td>Total Number of Logical Blocks Overwritten</td>
<td>78,981,882</td>
</tr>
<tr>
<td>Total Number of Logical Blocks that Failed Verification</td>
<td>0</td>
</tr>
<tr>
<td>Time Duration for Writing Test Logical Blocks (sec.)</td>
<td>600</td>
</tr>
<tr>
<td>Size in bytes of each Logical Block</td>
<td>8,192</td>
</tr>
<tr>
<td>Number of Failed I/O Requests in the process of the Test</td>
<td>0</td>
</tr>
</tbody>
</table>

Committed Data Persistence Implementation

The persistency of committed data is implemented at two levels. At the disk level, data loss is prevented through the use of RAID 10 arrays. At the controller level, all caches are mirrored across controllers, where write requests are only completed once the local cache has been successfully mirrored in another controller’s cache. In addition, cache content is protected from a loss of power by flushing the cache content to permanent flash memory, as soon as a power loss is detected. The flushing action is powered by a battery backup located in each controller.
APPENDIX A: SUPPORTING FILES

The following table details the content of the Supporting Files provided as part of this Full Disclosure Report.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>/SPC1_RESULTS</td>
<td>Data reduction worksheets</td>
<td>root</td>
</tr>
<tr>
<td>SPC1_INIT_0_Raw_Results.xlsx</td>
<td>Raw results for INIT Test Phase</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_METRICS_0_Quick_Look.xlsx</td>
<td>Quick Look Test Run Overview</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_METRICS_0_Raw_Results.xlsx</td>
<td>Raw results for Primary Metrics Test</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_METRICS_0_Summary_Results.xlsx</td>
<td>Primary Metrics Summary</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_PERSIST_1_0_Raw_Results.xlsx</td>
<td>Raw results for PERSIST1 Test Phase</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_PERSIST_2_0_Raw_Results.xlsx</td>
<td>Raw results for PERSIST2 Test Phase</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_Run_Set_Overview.xlsx</td>
<td>Run Set Overview Worksheet</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_VERIFY_0_Raw_Results.xlsx</td>
<td>Raw results for first VERIFY Test Phase</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>SPC1_VERIFY_1_Raw_Results.xlsx</td>
<td>Raw results for second VERIFY Test Phase</td>
<td>/SPC1_RESULTS</td>
</tr>
<tr>
<td>/C_Tuning</td>
<td>Tuning parameters and options</td>
<td>root</td>
</tr>
<tr>
<td>aio-max-nr.sh</td>
<td>Set maximum asynchronous I/O</td>
<td>/C_Tuning</td>
</tr>
<tr>
<td>nr_requests.sh</td>
<td>Increase disk queue depth</td>
<td>/C_Tuning</td>
</tr>
<tr>
<td>scheduler.sh</td>
<td>Change the I/O scheduler</td>
<td>/C_Tuning</td>
</tr>
<tr>
<td>/D_Creation</td>
<td>Storage configuration creation</td>
<td>root</td>
</tr>
<tr>
<td>mklin.txt</td>
<td>Create the storage environment</td>
<td>/D_Creation</td>
</tr>
<tr>
<td>mkvolume.sh</td>
<td>Create the Logical Volumes</td>
<td>/D_Creation</td>
</tr>
<tr>
<td>/E_Inventory</td>
<td>Configuration inventory</td>
<td>root</td>
</tr>
<tr>
<td>profile1_volume.log</td>
<td>List of logical volumes before INIT</td>
<td>/E_Inventory</td>
</tr>
<tr>
<td>profile1_storage.log</td>
<td>List of storage devices before INIT</td>
<td>/E_Inventory</td>
</tr>
<tr>
<td>profile2_volume.log</td>
<td>List of logical volumes after restart</td>
<td>/E_Inventory</td>
</tr>
<tr>
<td>profile2_storage.log</td>
<td>List of storage devices after restart</td>
<td>/E_Inventory</td>
</tr>
<tr>
<td>/F_Generator</td>
<td>Workload generator</td>
<td>root</td>
</tr>
<tr>
<td>slave_asu.asu</td>
<td>Defining LUNs hosting the ASUs</td>
<td>/F_generator</td>
</tr>
<tr>
<td>host.HST</td>
<td>Host configuration file</td>
<td>/F_generator</td>
</tr>
<tr>
<td>full_run.sh</td>
<td>Executing all test phases</td>
<td>/F_generator</td>
</tr>
</tbody>
</table>
APPENDIX B: THIRD PARTY QUOTATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Model</th>
<th>Description</th>
<th>Qty</th>
<th>Unit Price (USD)</th>
<th>Disc. (off)</th>
<th>Total Discount Price (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>OceanStor 5600 V5 Main Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>Controller Enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2</td>
<td>Expanding Interface Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.3</td>
<td>Disk Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4</td>
<td>Disk Enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.5</td>
<td>HBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6</td>
<td>Accessory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.7</td>
<td>Storage Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total of Product</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>374,254.48</td>
</tr>
<tr>
<td>1.1.8</td>
<td>Maintenance Support Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Huawei OCEANSTOR 5600 V5

<table>
<thead>
<tr>
<th>Name</th>
<th>Item Number</th>
<th>Quantity</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OceanStor 5600 V5 Engine (3U,Dual Controller,AC240H/DC256GB)</td>
<td>02351LWK-88134ULF-36</td>
<td>2</td>
<td>29292</td>
<td>58,584.00</td>
</tr>
<tr>
<td>Cache, SPE63C0300&484Disk Enclosure-2U,AC240H/DC256GB 2.5'DAE5252SU36960GB SSD SAS Disk Unit(2.5")</td>
<td>86034JNY-88134UHK-36</td>
<td>1</td>
<td>2919</td>
<td>2,919.00</td>
</tr>
<tr>
<td>Basic Software License (Including DeviceManager, SmartThin, SmartMulti-Tenant, SmartMigration, SmartErase, SmartMotion, SystemReporter,eService,SmartQuota,NFS,CIFS,NDMP)</td>
<td>8812153244</td>
<td>1</td>
<td>10267</td>
<td>10,267.00</td>
</tr>
<tr>
<td>OceanStor 5600 V5 Installation Service - Engineering</td>
<td>8812153244</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total of Service (3 years)

71,770.00

Total Price

446,024.48

Notes: Hi-Care On-Site Service includes: 7*24 Technical Assistance, Access to all new software updates and Online Support, 24*7*4 Hours Onsite Hardware Replacement.

Payment Terms:

Comments:

Noviant is an Authorized Value Added reseller (VAR) of networking products. Products sold by NF are factory new unless otherwise specified. All new products sold by NF carry its own Original Equipment Manufacturer's (OEM) Limited Warranty and software licenses. This Quote is valid for 90 days. Prices and availability is subject to change without notice. Installation and configuration costs are not included in the quoted pricing unless specified. A 20% Restocking Fee applies to all cancelled orders and/or returned products. Special Orders are non-returnable. Buyer is responsible for payment of all applicable taxes and freight charges. Issuance of customer PO against this Quote constitutes acceptance of Noviant Sales Terms conditions.

I agree to the these terms and conditions.

Authorized Acceptance: .. Print Name: .. Date: ____________

Noviant: ... Print Name: .. Date: ____________
APPENDIX C: TUNING PARAMETERS AND OPTIONS

The following scripts, listed below, were used to set tuning parameters and options:

- `aio-max-nr.sh` to change the maximum number of AIO operations to 1048576
- `nr_requests.sh` to change `nr_requests` from 128 to 2048 on each Host System for each device
- `scheduler.sh` to change the I/O scheduler from cfq to noop on each Host System, which will result in all incoming I/O requests inserted into a simple, unordered FIFO queue

The scripts described above are included in the Supporting Files (see Appendix A) and listed below.

aio-max-nr.sh
```
echo 10485760 > /proc/sys/fs/aio-max-nr
```

nr_requests.sh
```
echo 2048 >/sys/block/sdb/queue/nr_requests
echo 2048 >/sys/block/sdc/queue/nr_requests
echo 2048 >/sys/block/sdd/queue/nr_requests
echo 2048 >/sys/block/sde/queue/nr_requests
echo 2048 >/sys/block/sdf/queue/nr_requests
echo 2048 >/sys/block/sdg/queue/nr_requests
echo 2048 >/sys/block/sdh/queue/nr_requests
echo 2048 >/sys/block/sdi/queue/nr_requests
echo 2048 >/sys/block/sdj/queue/nr_requests
echo 2048 >/sys/block/sdk/queue/nr_requests
echo 2048 >/sys/block/sdl/queue/nr_requests
echo 2048 >/sys/block/sdn/queue/nr_requests
echo 2048 >/sys/block/sdo/queue/nr_requests
echo 2048 >/sys/block/sdp/queue/nr_requests
echo 2048 >/sys/block/sdq/queue/nr_requests
echo 2048 >/sys/block/sdr/queue/nr_requests
echo 2048 >/sys/block/sds/queue/nr_requests
```
• scheduler.sh

```bash
  echo noop >/sys/block/sdb/queue/scheduler
  echo noop >/sys/block/sdc/queue/scheduler
  echo noop >/sys/block/sdd/queue/scheduler
  echo noop >/sys/block/sde/queue/scheduler
  echo noop >/sys/block/sdf/queue/scheduler
  echo noop >/sys/block/sdg/queue/scheduler
  echo noop >/sys/block/sdh/queue/scheduler
  echo noop >/sys/block/sdi/queue/scheduler
  echo noop >/sys/block/sdj/queue/scheduler
  echo noop >/sys/block/sdk/queue/scheduler
  echo noop >/sys/block/sdl/queue/scheduler
  echo noop >/sys/block/sdm/queue/scheduler
  echo noop >/sys/block/sdn/queue/scheduler
  echo noop >/sys/block/sdo/queue/scheduler
  echo noop >/sys/block/sdp/queue/scheduler
  echo noop >/sys/block/sdq/queue/scheduler
  echo noop >/sys/block/sdr/queue/scheduler
  echo noop >/sys/block/sds/queue/scheduler
  echo noop >/sys/block/sdt/queue/scheduler
  echo noop >/sys/block/sdu/queue/scheduler
  echo noop >/sys/block/sdv/queue/scheduler
  echo noop >/sys/block/sdw/queue/scheduler
  echo noop >/sys/block/sdx/queue/scheduler
  echo noop >/sys/block/sdy/queue/scheduler
  echo noop >/sys/block/sdz/queue/scheduler
  echo noop >/sys/block/sdaa/queue/scheduler
  echo noop >/sys/block/sdab/queue/scheduler
  echo noop >/sys/block/sdac/queue/scheduler
  echo noop >/sys/block/sdad/queue/scheduler
  echo noop >/sys/block/sdae/queue/scheduler
  echo noop >/sys/block/sdaf/queue/scheduler
  echo noop >/sys/block/sdag/queue/scheduler
```
APPENDIX D: STORAGE CONFIGURATION CREATION

Environment
First, the CLI commands from the following command file are copied and pasted into the OCEANSTOR 5600 V5 CLI window. These commands are executed on one of the Host Systems.

- **mklun.txt**

Next, the following shell script is executed on one of the Host Systems.

- **mkvolume.sh**

Step 1 - Create Disk Domains, Storage Pools, LUNs
The **mklun.txt** command file, listed below, includes all the CLI commands to perform the following actions:
- Create 8 disk domains
- Create 8 storage pools
- Create 32 LUNs
- Create one LUN group
- Add the 32 LUNs to the LUN group

The command file described above is included in the Supporting Files (see Appendix A) and listed below.

mklun.txt

```plaintext
create disk_domain name=dd00 disk_list=DAE000.0-8 tier0_hotspare_strategy=low
disk_domain_id=0
create disk_domain name=dd01 disk_list=DAE030.0-8 tier0_hotspare_strategy=low
disk_domain_id=1
create disk_domain name=dd02 disk_list=DAE040.0-8 tier0_hotspare_strategy=low
disk_domain_id=2
create disk_domain name=dd03 disk_list=DAE100.0-8 tier0_hotspare_strategy=low
disk_domain_id=3
create disk_domain name=dd04 disk_list=DAE130.0-8 tier0_hotspare_strategy=low
disk_domain_id=4
create disk_domain name=dd05 disk_list=DAE140.0-8 tier0_hotspare_strategy=low
disk_domain_id=5
create disk_domain name=dd06 disk_list=DAE070.0-8 tier0_hotspare_strategy=low
disk_domain_id=6
create disk_domain name=dd07 disk_list=DAE170.0-8 tier0_hotspare_strategy=low
disk_domain_id=7

create storage_pool name=sp00 disk_type=SSD capacity=3139GB raid_level=RAID10
pool_id=0 disk_domain_id=0
create storage_pool name=sp01 disk_type=SSD capacity=3139GB raid_level=RAID10
pool_id=1 disk_domain_id=1
create storage_pool name=sp02 disk_type=SSD capacity=3139GB raid_level=RAID10
pool_id=2 disk_domain_id=2
create storage_pool name=sp03 disk_type=SSD capacity=3139GB raid_level=RAID10
pool_id=3 disk_domain_id=3
```
create storage_pool name=sp04 disk_type=SSD capacity=3139GB raid_level=RAID10 pool_id=4 disk_domain_id=4
create storage_pool name=sp05 disk_type=SSD capacity=3139GB raid_level=RAID10 pool_id=5 disk_domain_id=5
create storage_pool name=sp06 disk_type=SSD capacity=3139GB raid_level=RAID10 pool_id=6 disk_domain_id=6
create storage_pool name=sp07 disk_type=SSD capacity=3139GB raid_level=RAID10 pool_id=7 disk_domain_id=7

create lun name=lun_sp00 lun_id_list=0-3 pool_id=0 capacity=784GB prefetch_policy=none
create lun name=lun_sp01 lun_id_list=4-7 pool_id=1 capacity=784GB prefetch_policy=none
create lun name=lun_sp02 lun_id_list=8-11 pool_id=2 capacity=784GB prefetch_policy=none
create lun name=lun_sp03 lun_id_list=12-15 pool_id=3 capacity=784GB prefetch_policy=none
create lun name=lun_sp04 lun_id_list=16-19 pool_id=4 capacity=784GB prefetch_policy=none
create lun name=lun_sp05 lun_id_list=20-23 pool_id=5 capacity=784GB prefetch_policy=none
create lun name=lun_sp06 lun_id_list=24-27 pool_id=6 capacity=784GB prefetch_policy=none
create lun name=lun_sp07 lun_id_list=28-31 pool_id=7 capacity=784GB prefetch_policy=none

create lun_group name=lg0 lun_group_id=0
add lun_group lun lun_group_id=0 lun_id_list=0-31

Step 2 - Create Mapping View, Host Group and Host

The **mklun.txt** command file, listed below, includes all the CLI commands to perform the following actions:

- Create 6 hosts
- Create a host group for the 6 hosts.
- Create a mapping view
- Add the FC port’s WWN to the 6 hosts

The command file described above is included in the Supporting Files (see Appendix A) and listed below.

mklun.txt (cont.)

create host name=host0 operating_system=Linux host_id=0
create host name=host1 operating_system=Linux host_id=1
create host name=host2 operating_system=Linux host_id=2
create host name=host3 operating_system=Linux host_id=3
create host name=host4 operating_system=Linux host_id=4
create host name=host5 operating_system=Linux host_id=5

create host_group name=hg0 host_group_id=0 host_id_list=0-5

create mapping_view name=mv1 mapping_view_id=1 lun_group_id=0 host_group_id=0

add host initiator host_id=0 initiator_type=FC wwn=21000024ff4b81fc
add host initiator host_id=0 initiator_type=FC wwn=21000024ff4b81fd
add host initiator host_id=0 initiator_type=FC wwn=21000024ff3cc4ca
add host initiator host_id=0 initiator_type=FC wwn=21000024ff3cc4cb

add host initiator host_id=1 initiator_type=FC wwn=21000024ff7f431a
add host initiator host_id=1 initiator_type=FC wwn=21000024ff7f431b
add host initiator host_id=1 initiator_type=FC wwn=21000024ff7f78fe
add host initiator host_id=1 initiator_type=FC wwn=21000024ff7f78ff

add host initiator host_id=2 initiator_type=FC wwn=21000024ff17df38
add host initiator host_id=2 initiator_type=FC wwn=21000024ff17df39
add host initiator host_id=2 initiator_type=FC wwn=21000024ff17df54

add host initiator host_id=3 initiator_type=FC wwn=21000024ff17e0ba
add host initiator host_id=3 initiator_type=FC wwn=21000024ff28ea5c
add host initiator host_id=3 initiator_type=FC wwn=21000024ff28ea5d
add host initiator host_id=3 initiator_type=FC wwn=21000024ff7fb903
add host initiator host_id=4 initiator_type=FC wwn=21000024ff7fb716
add host initiator host_id=4 initiator_type=FC wwn=21000024ff7fb902
add host initiator host_id=5 initiator_type=FC wwn=21000024ff368169
add host initiator host_id=5 initiator_type=FC wwn=21000024ff3c02c2
add host initiator host_id=5 initiator_type=FC wwn=21000024ff3c02c3
add host initiator host_id=5 initiator_type=FC wwn=21000024ff368168

Step 3 - Create Volumes on the Master Host Systems

The _mkvolume.sh_ shell script, listed below, is invoked on the master Host Systems to perform the following actions:

- Create 32 physical volumes
- Create a volume group for the 32 physical volumes
- Create 18 Logical Volumes for ASU-1
- Create 18 Logical Volumes for ASU-2
- Create 2 Logical Volumes for ASU-3

The shell script described above is included in the Supporting Files (see Appendix A) and listed below.

```
mkvolume.sh
```

```
pvcreate /dev/sdb
pvcreate /dev/sdc
pvcreate /dev/sdd
pvcreate /dev/sde
pvcreate /dev/sdf
pvcreate /dev/sdg
pvcreate /dev/sdh
pvcreate /dev/sdi
pvcreate /dev/sdj
pvcreate /dev/sdk
pvcreate /dev/sdl
pvcreate /dev/sdm
pvcreate /dev/sdn
pvcreate /dev/sdo
```
pvcreate /dev/sdp
pvcreate /dev/sdq
pvcreate /dev/sdr
pvcreate /dev/sds
pvcreate /dev/sdt
pvcreate /dev/sdu
pvcreate /dev/sdv
pvcreate /dev/sdw
pvcreate /dev/sdx
pvcreate /dev/sdy
pvcreate /dev/sdz
pvcreate /dev/sdaa
pvcreate /dev/sdab
pvcreate /dev/sdac
pvcreate /dev/sdad
pvcreate /dev/sdae
pvcreate /dev/sdaf
pvcreate /dev/sdag

vgcreate vg1 /dev/sdb /dev/sdc /dev/sdd /dev/sde /dev/sdf /dev/sgd /dev/sgh
 /dev/sdi /dev/sdj /dev/sdk /dev/sdl /dev/sdm /dev/sdn /dev/sdo /dev/sdp
 /dev/sdq /dev/sdr /dev/sds /dev/sdt /dev/sgd /dev/sdw /dev/sdx
 /dev/sdy /dev/sdz /dev/sdaa /dev/sdab /dev/sdac /dev/sdad /dev/sdae /dev/sgaf
 /dev/sgag

lvcreate -n asu101 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu102 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu103 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu104 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu105 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu106 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu107 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu108 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu109 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu110 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu111 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu112 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu113 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu114 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu115 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu116 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu117 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu118 -i 32 -t 512 -c y -l 608.25g vg1

lvcreate -n asu201 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu202 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu203 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu204 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu205 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu206 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu207 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu208 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu209 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu210 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu211 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu212 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu213 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu214 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu215 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu216 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu217 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu218 -i 32 -t 512 -c y -l 608.25g vg1
lvcreate -n asu301 -i 32 -I 512 -C y -L 1216.5g vg1
lvcreate -n asu302 -i 32 -I 512 -C y -L 1216.5g vg1
APPENDIX E: CONFIGURATION INVENTORY

An inventory of the Tested Storage Configuration was collected during the execution the script full_run.sh. It generated the following log file:

- `profile1_volume.log` List of configured volumes before the INIT Phase.
- `profile1_storage.log` List of configured storage before the INIT Phase.
- `Profile2_volume.log` List of configured volumes after TSC restart.
- `Profile2_storage.log` List of configured storage after TSC restart.

The above log files are included in the Supporting Files (see Appendix A).
APPENDIX F: WORKLOAD GENERATOR

The ASUs accessed by the SPC-1 workload generator, are defined using the script `slave_asu.asu`.

The phases of the benchmark are executed using the script `full_run.sh`. The script pauses at the end of the PERSIST_1 test phase. Once the TSC has been restarted, the PERSIST_2 test phase is executed by pressing ENTER from the console where the script has been invoked.

The above scripts are included in the Supporting Files (see Appendix A) and listed below.

```
slave_asu.asu

ASU=1
OFFSET=0
SIZE=0
DEVICE=/dev/vg1/asa101
DEVICE=/dev/vg1/asa102
DEVICE=/dev/vg1/asa103
DEVICE=/dev/vg1/asa104
DEVICE=/dev/vg1/asa105
DEVICE=/dev/vg1/asa106
DEVICE=/dev/vg1/asa107
DEVICE=/dev/vg1/asa108
DEVICE=/dev/vg1/asa109
DEVICE=/dev/vg1/asa110
DEVICE=/dev/vg1/asa111
DEVICE=/dev/vg1/asa112
DEVICE=/dev/vg1/asa113
DEVICE=/dev/vg1/asa114
DEVICE=/dev/vg1/asa115
DEVICE=/dev/vg1/asa116
DEVICE=/dev/vg1/asa117
DEVICE=/dev/vg1/asa118

--
ASU=2
OFFSET=0
SIZE=0
DEVICE=/dev/vg1/asa201
DEVICE=/dev/vg1/asa202
DEVICE=/dev/vg1/asa203
DEVICE=/dev/vg1/asa204
DEVICE=/dev/vg1/asa205
DEVICE=/dev/vg1/asa206
DEVICE=/dev/vg1/asa207
DEVICE=/dev/vg1/asa208
DEVICE=/dev/vg1/asa209
DEVICE=/dev/vg1/asa210
DEVICE=/dev/vg1/asa211
DEVICE=/dev/vg1/asa212
DEVICE=/dev/vg1/asa213
DEVICE=/dev/vg1/asa214
DEVICE=/dev/vg1/asa215
DEVICE=/dev/vg1/asa216
```
full_run.sh

#!/bin/sh
expect shstorage.tcl > profile1_storage.log
date > profile1_volume.log
lvdisplay >> profile1_volume.log
date >> profile1_volume.log

/root/SPCv302_2017504/spc1 -run SPC1_INIT -iops 6000 -storage slave_asu.asu -output ./newtool/spc1_INIT_6k_iops -master 4host.HST
/root/SPCv302_2017504/spc1 -run SPC1_VERIFY -iops 1000 -storage slave_asu.asu -output ./newtool/spc1_VERIFY1_1000_iops -master 4host.HST
/root/SPCv302_2017504/spc1 -run SPC1_METRICS -iops 450200 -storage slave_asu.asu -output ./newtool/spc1_METRICS_450k_iops -master 4host.HST
/root/SPCv302_2017504/spc1 -run SPC1_VERIFY -iops 1000 -storage slave_asu.asu -output ./newtool/spc1_VERIFY2_1000_iops -master 4host.HST
/root/SPCv302_2017504/spc1 -run SPC1_PERSIST_1 -iops 150000 -storage slave_asu.asu -output ./newtool/spc1_PERSIST_150k_iops -master 4host.HST

read

expect shstorage.tcl > profile2_storage.log
date > profile2_volume.log
lvdisplay >> profile2_volume.log
date >> profile2_volume.log

/root/SPCv302_2017504/spc1 -run SPC1_PERSIST_2 -iops 150000 -storage slave_asu.asu -output ./newtool/spc1_PERSIST_150k_iops -master 4host.HST